Extraction of fuzzy rules from trained neural network using evolutionary algorithm

نویسندگان

  • Urszula Markowska-Kaczmar
  • Wojciech Trelak
چکیده

This paper presents our approach to the rule extraction problem from trained neural network. A method called REX is briefly described. REX acquires a set of fuzzy rules using an evolutionary algorithm. Evolutionary algorithm searches not only fuzzy rules, but also a description of fuzzy sets. The way of coding and evaluation process of an individual is presented. The method was tested using the following benchmark data sets: IRIS, WINE and Wisconsin Breast Cancer Diagnosis. On the basis of the experimental studies shown in this paper, we can conclude that rules obtained by REX can be easily understood by human – they include small number of premises, and their fidelity is very high. Obtained results are compared to other rule extraction methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network

In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as  amount  of  flow  intensity  ratio,  temperature,  residence  time,  and  pH  are  used  as  input  variables  of  the network,  whereas  the  extraction  yield  is  considere...

متن کامل

Linguistic Rule Extraction from Neural Networks and Genetic-Algorithm-Based Rule Selection

This paper proposes a hybrid approach to the design of a compact fuzzy rule-based classi>cation system with a small number of linguistic rules. The proposed approach consists of two procedures: rule extraction from a trained neural network and rule selection by a genetic algorithm. In this paper, we first describe how linguistic rules can be extracted from a multilayer feedforward neural networ...

متن کامل

ANN Rule Extraction using Evolutionary Programmed Fuzzy Membership Functions

An algorithm is presented that uses evolutionary programming to construct fuzzy membership functions that are used to extract Zadeh-Mamdani fuzzy rules from a constructive neural network. The algorithm has potential applications in fields such as data mining and knowledge-based decision support systems. Evaluation of the algorithm over two well known benchmark data sets shows that while the res...

متن کامل

Fuzzy and crisp logical rule extraction methods in application to medical data

A comprehensive methodology of extraction of optimal sets of logical rules using neural networks and global minimization procedures has been developed. Initial rules are extracted using density estimation neural networks with rectangular functions or multi-layered perceptron (MLP) networks trained with constrained backpropagation algorithm, transforming MLPs into simpler networks performing log...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003