Extraction of fuzzy rules from trained neural network using evolutionary algorithm
نویسندگان
چکیده
This paper presents our approach to the rule extraction problem from trained neural network. A method called REX is briefly described. REX acquires a set of fuzzy rules using an evolutionary algorithm. Evolutionary algorithm searches not only fuzzy rules, but also a description of fuzzy sets. The way of coding and evaluation process of an individual is presented. The method was tested using the following benchmark data sets: IRIS, WINE and Wisconsin Breast Cancer Diagnosis. On the basis of the experimental studies shown in this paper, we can conclude that rules obtained by REX can be easily understood by human – they include small number of premises, and their fidelity is very high. Obtained results are compared to other rule extraction methods.
منابع مشابه
Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملLinguistic Rule Extraction from Neural Networks and Genetic-Algorithm-Based Rule Selection
This paper proposes a hybrid approach to the design of a compact fuzzy rule-based classi>cation system with a small number of linguistic rules. The proposed approach consists of two procedures: rule extraction from a trained neural network and rule selection by a genetic algorithm. In this paper, we first describe how linguistic rules can be extracted from a multilayer feedforward neural networ...
متن کاملANN Rule Extraction using Evolutionary Programmed Fuzzy Membership Functions
An algorithm is presented that uses evolutionary programming to construct fuzzy membership functions that are used to extract Zadeh-Mamdani fuzzy rules from a constructive neural network. The algorithm has potential applications in fields such as data mining and knowledge-based decision support systems. Evaluation of the algorithm over two well known benchmark data sets shows that while the res...
متن کاملFuzzy and crisp logical rule extraction methods in application to medical data
A comprehensive methodology of extraction of optimal sets of logical rules using neural networks and global minimization procedures has been developed. Initial rules are extracted using density estimation neural networks with rectangular functions or multi-layered perceptron (MLP) networks trained with constrained backpropagation algorithm, transforming MLPs into simpler networks performing log...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003